Tuesday, 5 September 2023

Probabilistic Estimation of the Algebraic Degree of Boolean Functions

Recently, our cryptography paper on "Probabilistic estimation of the algebraic degree of Boolean functions" was published in Springer Journal as a result of about 3 years of research: https://lnkd.in/eyEw5pce

𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭: 𝘛𝘩𝘦 𝘢𝘭𝘨𝘦𝘣𝘳𝘢𝘪𝘤 𝘥𝘦𝘨𝘳𝘦𝘦 𝘪𝘴 𝘢𝘯 𝘪𝘮𝘱𝘰𝘳𝘵𝘢𝘯𝘵 𝘱𝘢𝘳𝘢𝘮𝘦𝘵𝘦𝘳 𝘰𝘧 𝘉𝘰𝘰𝘭𝘦𝘢𝘯 𝘧𝘶𝘯𝘤𝘵𝘪𝘰𝘯𝘴 𝘶𝘴𝘦𝘥 𝘪𝘯 𝘤𝘳𝘺𝘱𝘵𝘰𝘨𝘳𝘢𝘱𝘩𝘺. 𝘞𝘩𝘦𝘯 𝘢 𝘧𝘶𝘯𝘤𝘵𝘪𝘰𝘯 𝘪𝘯 𝘢 𝘭𝘢𝘳𝘨𝘦 𝘯𝘶𝘮𝘣𝘦𝘳 𝘰𝘧 𝘷𝘢𝘳𝘪𝘢𝘣𝘭𝘦𝘴 𝘪𝘴 𝘯𝘰𝘵 𝘨𝘪𝘷𝘦𝘯 𝘦𝘹𝘱𝘭𝘪𝘤𝘪𝘵𝘭𝘺 𝘪𝘯 𝘢𝘭𝘨𝘦𝘣𝘳𝘢𝘪𝘤 𝘯𝘰𝘳𝘮𝘢𝘭 𝘧𝘰𝘳𝘮, 𝘪𝘵 𝘪𝘴 𝘶𝘴𝘶𝘢𝘭𝘭𝘺 𝘯𝘰𝘵 𝘧𝘦𝘢𝘴𝘪𝘣𝘭𝘦 𝘵𝘰 𝘤𝘰𝘮𝘱𝘶𝘵𝘦 𝘪𝘵𝘴 𝘥𝘦𝘨𝘳𝘦𝘦, 𝘴𝘰 𝘸𝘦 𝘯𝘦𝘦𝘥 𝘵𝘰 𝘦𝘴𝘵𝘪𝘮𝘢𝘵𝘦 𝘪𝘵. 𝘞𝘦 𝘱𝘳𝘰𝘱𝘰𝘴𝘦 𝘢 𝘱𝘳𝘰𝘣𝘢𝘣𝘪𝘭𝘪𝘴𝘵𝘪𝘤 𝘵𝘦𝘴𝘵 𝘧𝘰𝘳 𝘥𝘦𝘤𝘪𝘥𝘪𝘯𝘨 𝘸𝘩𝘦𝘵𝘩𝘦𝘳 𝘵𝘩𝘦 𝘢𝘭𝘨𝘦𝘣𝘳𝘢𝘪𝘤 𝘥𝘦𝘨𝘳𝘦𝘦 𝘰𝘧 𝘢 𝘉𝘰𝘰𝘭𝘦𝘢𝘯 𝘧𝘶𝘯𝘤𝘵𝘪𝘰𝘯 𝘧 𝘪𝘴 𝘣𝘦𝘭𝘰𝘸 𝘢 𝘤𝘦𝘳𝘵𝘢𝘪𝘯 𝘷𝘢𝘭𝘶𝘦 𝘬. 𝘐𝘧 𝘵𝘩𝘦 𝘥𝘦𝘨𝘳𝘦𝘦 𝘪𝘴 𝘪𝘯𝘥𝘦𝘦𝘥 𝘣𝘦𝘭𝘰𝘸 𝘬, 𝘵𝘩𝘦𝘯 𝘧 𝘸𝘪𝘭𝘭 𝘢𝘭𝘸𝘢𝘺𝘴 𝘱𝘢𝘴𝘴 𝘵𝘩𝘦 𝘵𝘦𝘴𝘵, 𝘰𝘵𝘩𝘦𝘳𝘸𝘪𝘴𝘦 𝘧 𝘸𝘪𝘭𝘭 𝘧𝘢𝘪𝘭 𝘦𝘢𝘤𝘩 𝘪𝘯𝘴𝘵𝘢𝘯𝘤𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘵𝘦𝘴𝘵 𝘸𝘪𝘵𝘩 𝘢 𝘱𝘳𝘰𝘣𝘢𝘣𝘪𝘭𝘪𝘵𝘺 𝘥𝘵_𝘬(𝘧), 𝘸𝘩𝘪𝘤𝘩 𝘪𝘴 𝘤𝘭𝘰𝘴𝘦𝘭𝘺 𝘳𝘦𝘭𝘢𝘵𝘦𝘥 𝘵𝘰 𝘵𝘩𝘦 𝘢𝘷𝘦𝘳𝘢𝘨𝘦 𝘯𝘶𝘮𝘣𝘦𝘳 𝘰𝘧 𝘮𝘰𝘯𝘰𝘮𝘪𝘢𝘭𝘴 𝘰𝘧 𝘥𝘦𝘨𝘳𝘦𝘦 𝘬 𝘰𝘧 𝘵𝘩𝘦 𝘱𝘰𝘭𝘺𝘯𝘰𝘮𝘪𝘢𝘭𝘴 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘢𝘧𝘧𝘪𝘯𝘦 𝘦𝘲𝘶𝘪𝘷𝘢𝘭𝘦𝘯𝘵 𝘵𝘰 𝘧. 𝘛𝘩𝘦 𝘵𝘦𝘴𝘵 𝘩𝘢𝘴 𝘢 𝘨𝘰𝘰𝘥 𝘢𝘤𝘤𝘶𝘳𝘢𝘤𝘺 𝘰𝘯𝘭𝘺 𝘪𝘧 𝘵𝘩𝘪𝘴 𝘱𝘳𝘰𝘣𝘢𝘣𝘪𝘭𝘪𝘵𝘺 𝘥𝘵_𝘬(𝘧) 𝘰𝘧 𝘧𝘢𝘪𝘭𝘪𝘯𝘨 𝘵𝘩𝘦 𝘵𝘦𝘴𝘵 𝘪𝘴 𝘯𝘰𝘵 𝘵𝘰𝘰 𝘴𝘮𝘢𝘭𝘭. 𝘞𝘦 𝘪𝘯𝘪𝘵𝘪𝘢𝘵𝘦 𝘵𝘩𝘦 𝘴𝘵𝘶𝘥𝘺 𝘰𝘧 𝘥𝘵_𝘬(𝘧) 𝘣𝘺 𝘴𝘩𝘰𝘸𝘪𝘯𝘨 𝘵𝘩𝘢𝘵 𝘪𝘯 𝘵𝘩𝘦 𝘱𝘢𝘳𝘵𝘪𝘤𝘶𝘭𝘢𝘳 𝘤𝘢𝘴𝘦 𝘸𝘩𝘦𝘯 𝘵𝘩𝘦 𝘥𝘦𝘨𝘳𝘦𝘦 𝘰𝘧 𝘧 𝘪𝘴 𝘢𝘤𝘵𝘶𝘢𝘭𝘭𝘺 𝘦𝘲𝘶𝘢𝘭 𝘵𝘰 𝘬, 𝘵𝘩𝘦 𝘱𝘳𝘰𝘣𝘢𝘣𝘪𝘭𝘪𝘵𝘺 𝘸𝘪𝘭𝘭 𝘣𝘦 𝘪𝘯 𝘵𝘩𝘦 𝘪𝘯𝘵𝘦𝘳𝘷𝘢𝘭 (0.288788, 0.5], 𝘢𝘯𝘥 𝘵𝘩𝘦𝘳𝘦𝘧𝘰𝘳𝘦 𝘢 𝘴𝘮𝘢𝘭𝘭 𝘯𝘶𝘮𝘣𝘦𝘳 𝘰𝘧 𝘳𝘶𝘯𝘴 𝘰𝘧 𝘵𝘩𝘦 𝘵𝘦𝘴𝘵 𝘸𝘪𝘭𝘭 𝘣𝘦 𝘴𝘶𝘧𝘧𝘪𝘤𝘪𝘦𝘯𝘵 𝘵𝘰 𝘨𝘪𝘷𝘦, 𝘸𝘪𝘵𝘩 𝘷𝘦𝘳𝘺 𝘩𝘪𝘨𝘩 𝘱𝘳𝘰𝘣𝘢𝘣𝘪𝘭𝘪𝘵𝘺, 𝘵𝘩𝘦 𝘤𝘰𝘳𝘳𝘦𝘤𝘵 𝘢𝘯𝘴𝘸𝘦𝘳. 𝘌𝘹𝘢𝘤𝘵 𝘷𝘢𝘭𝘶𝘦𝘴 𝘰𝘧 𝘥𝘵_𝘬(𝘧) 𝘧𝘰𝘳 𝘢𝘭𝘭 𝘵𝘩𝘦 𝘱𝘰𝘭𝘺𝘯𝘰𝘮𝘪𝘢𝘭𝘴 𝘪𝘯 8 𝘷𝘢𝘳𝘪𝘢𝘣𝘭𝘦𝘴 𝘸𝘦𝘳𝘦 𝘤𝘰𝘮𝘱𝘶𝘵𝘦𝘥 𝘶𝘴𝘪𝘯𝘨 𝘵𝘩𝘦 𝘳𝘦𝘱𝘳𝘦𝘴𝘦𝘯𝘵𝘢𝘵𝘪𝘷𝘦𝘴 𝘭𝘪𝘴𝘵𝘦𝘥 𝘣𝘺 𝘏𝘰𝘶 𝘢𝘯𝘥 𝘣𝘺 𝘓𝘢𝘯𝘨𝘦𝘷𝘪𝘯 𝘢𝘯𝘥 𝘓𝘦𝘢𝘯𝘥𝘦𝘳.

No comments:

Post a Comment

Let me know any remarks or questions you may have. Please write down your name.

HELLO, I'M PERCY REYES! I've been working as a senior SQL Server Database Engineer for over 20 years; I'm a three-time Microsoft Data Platform MVP. I'm a cryptographer conducting research on cryptographic Boolean functions and their applications.